wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from: [0121] $-R^a$, $-OR^b$, optionally substituted amino (including $-NR^cCOR^b$, $-NR^cCO_2R^a$, $-NR^cCONR^bR^c$, $-NR^bC$ (NR^c) NR^bR^c , $-NR^bC$ (NR^c) NR^bR^c , $-NR^bC$ (NCN) NR^bR^c , and $-NR^cSO_2R^a$), halo, cyano, nitro, oxo (as a substitutent for cycloalkyl, heterocycloalkyl, and heteroaryl), optionally substituted acyl (such as $-COR^b$), optionally substituted alkoxycarbonyl (such as $-COR^bR^c$), $-OCOR^bR^c$), aminocarbonyl (such as $-CONR^bR^c$), $-OCOR^b$, $-OCO_2R^a$, $OCONR^bR^c$, sulfanyl (such as $-SO_2R^a$ and $-SO_2NR^bR^c$), **[0122]** where R^a is chosen from optionally substituted C_1 - C_6 alkyl, optionally substituted alkenyl, optionally substituted arkynyl, optionally substituted aryl, and optionally substituted heteroaryl; [0123] R^b is chosen from H, optionally substituted C_1 - C_6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and [0124] R^c is independently chosen from hydrogen and optionally substituted C_1 - C_4 alkyl; or [0125] R^b and R^c , and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and [0126] where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C₁-C₄ alkyl, aryl, heteroaryl, aryl-C₁-C₄ alkyl-, heteroaryl- C_1 - C_4 alkyl-, C_1 - C_4 haloalkyl, — OC_1 - C_4 alkyl, $-OC_1-C_4$ alkylphenyl, $-C_1-C_4$ alkyl-OH, $-OC_1-C_4$ haloalkyl, halo, -OH, $-NH_2$, $-C_1$ - C_4 alkyl- NH_2 , $-N(C_1$ - C_4 alkyl)(C_1 - C_4 alkyl), $-NH(C_1$ - C_4 alkyl), $-N(C_1$ - C_4 $alkyl)(C_1\text{-}C_4 \quad alkylphenyl), \quad --NH(C_1\text{-}C_4 \quad alkylphenyl),$ cyano, nitro, oxo (as a substitutent for cycloalkyl, heterocycloalkyl, or heteroaryl), — CO_2H , — $C(O)OC_1$ - C_4 alkyl, — $CON(C_1$ - C_4 alkyl)(C_1 - C_4 alkyl), — $CONH(C_1$ - C_4 alkyl), $-\text{CONH}_{2}^{1}$, $-\text{NHC(O)(C}_{1}\text{-C}_{4}$ alkyl), -NHC(O)(phenyl), $-N(C_1-C_4 \text{ alkyl})C(O)(C_1-C_4 \text{ alkyl}), -N(C_1-C_4 \text{ alkyl})C(O)$ (phenyl), $-C(O)C_1-C_4$ alkyl, $-C(O)C_1-C_4$ alkylphenyl, $-C(O)C_1-C_4$ haloalkyl, $-OC(O)C_1-C_4$ alkyl, $-SO_2(C_1-C_4)$ alkyl), —SO₂(phenyl), —SO₂(C₁-C₄ haloalkyl), —SO₂NH₂, $-SO_2NH(C_1-C_4 \text{ alkyl}), -SO_2NH(\text{phenyl}), -NHSO_3(C_1-C_4 -SO_2NH(\text{phenyl}), -NHSO_3(C_1-C_4 \text{ alkyl}), -SO_2NH(\text{phenyl}), -SO_2NH(\text{ph$ C_4 alkyl), —NHSO₂(phenyl), and —NHSO₂($\dot{C_1}$ - $\dot{C_4}$ haloalkyl). In some embodiments, a substituted alkoxy group is "polyalkoxy" or —O-(optionally substituted alkylene)-(optionally substituted alkoxy), and includes groups such as -OCH₂CH₂OCH₃, and residues of glycol ethers such as polyethyleneglycol, and —O(CH₂CH₂O), CH₃, where x is an integer of 2-20, such as 2-10, and for example, 2-5. Another substituted alkoxy group is hydroxyalkoxy or —OCH₂(CH₂) OH, where y is an integer of 1-10, such as 1-4. [0127] The term "substituted alkoxycarbonyl" refers to the group (substituted alkyl)-O—C(O)— wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted refers to alkyl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from: [0128] $-R^a$, $-OR^b$, optionally substituted amino (including $-NR^cCOR^b$, $-NR^cCO_2R^a$, $-NR^cCONR^bR^c$, NR^bC (NR^c) NR^bR^c , $-NR^bC$ (NCN) NR^bR^c , and $-NR^cSO_2R^a$), halo, cyano, nitro, oxo (as a substitutent for cycloalkyl, heterocycloalkyl, and heteroaryl), optionally substituted acyl (such as $-COR^b$), optionally substituted alkoxycarbonyl (such as $-CO_2R^b$), aminocarbonyl (such as $-CONR^bR^c$), $-OCOR^b$, $-OCO_2R^a$, $OCONR^bR^c$, sulfanyl (such as SR^b), sulfinyl (such as $-SO_2R^a$ and $-SO_2NR^bR^c$), **[0129]** where R^a is chosen from optionally substituted C_1 - C_6 alkyl, optionally substituted alkenyl, optionally substituted arkynyl, optionally substituted aryl, and optionally substituted heteroaryl; **[0130]** R^b is chosen from H, optionally substituted C_1 - C_6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and [0131] R^c is independently chosen from hydrogen and optionally substituted C_1 - C_4 alkyl; or [0132] R^b and R^c , and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and [0133] where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C1-C4 alkyl, aryl, heteroaryl, aryl-C1-C4 alkyl-, heteroaryl-C₁-C₄ alkyl-, C₁-C₄ haloalkyl, —OC₁-C₄ alkyl, $-OC_1$ - C_4 alkylphenyl, $-C_1$ - C_4 alkyl-OH, $-OC_1$ - C_4 haloalkyl, halo, —OH, — NH_2 , — C_1 - C_4 alkyl- NH_2 , — $N(C_1$ - C_4 alkyl)(C_1 - C_4 alkyl), —NH(C_1 - C_4 alkyl), —N(C_1 - C_4 $alkyl)(C_1-C_4 \quad alkylphenyl), \quad --NH(C_1-C_4 \quad alkylphenyl),$ cyano, nitro, oxo (as a substitutent for cycloalkyl, heterocycloalkyl, or heteroaryl), —CO₂H, —C(O)OC₁-C₄ alkyl, $-CON(C_1-C_4 \text{ alkyl})(C_1-C_4 \text{ alkyl}), -CONH(C_1-C_4 \text{ alkyl}),$ $-CONH_2^1$, $-NHC(O)(C_1-C_4 \text{ alkyl})$, -NHC(O)(phenyl), $-N(C_1-C_4 \text{ alkyl})C(O)(C_1-C_4 \text{ alkyl}), -N(C_1-C_4 \text{ alkyl})C(O)$ (phenyl), $-C(O)C_1-C_4$ alkyl, $-C(O)C_1-C_4$ alkylphenyl, $-C(O)C_1-C_4$ haloalkyl, $-OC(O)C_1-C_4$ alkyl, $-SO_2(C_1-C_4)$ alkyl), $-SO_2$ (phenyl), $-SO_2(C_1-C_4 \text{ haloalkyl})$, $-SO_2NH_2$, $-SO_2NH(C_1-C_4 \text{ alkyl}), -SO_2NH(\text{phenyl}), -NHSO_2(C_1-C_4 -SO_2NH(\text{phenyl$ C_4 alkyl), —NHSO₂(phenyl), and —NHSO₂($\hat{C_1}$ - C_4 haloalkyl). [0134] The term "substituted amino" refers to the group —NHR" or —NR d R e wherein R d is chosen from: hydroxy, optionally substituted alkoxy, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted acyl, optionally substituted carbamimidoyl, aminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, optionally substituted alkoxycarbonyl, sulfinyl and sulfonyl, and wherein Re is chosen from: optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, and wherein substituted alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl refer respectively to alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from: [0135] $-R^a$, $-OR^b$, optionally substituted amino (including $-NR^cCOR^b$, $-NR^cCO_2R^a$, $-NR^cCONR^bR^c$, $-NR^bC$ (NR^c) NR^bR^c , $-NR^bC$ (NCN) NR^bR^c , and $-NR^cSO_2R^a$), halo, cyano, nitro, oxo (as a substitutent for cycloalkyl, heterocycloalkyl, and heteroaryl), optionally substituted acyl (such as $-COR^b$), optionally substituted alkoxycarbonyl (such as $-CO_3R^b$), aminocarbonyl (such as $-CONR^bR^c$),